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 
Abstract—In this paper a cascaded H-Bridge (CHB) multilevel 

converter based Photovoltaic (PV) system with no voltage or 
current sensors at the dc-side is proposed. Eliminating the dc-side 
sensors simplifies the hardware, leading to lower cost and higher 
reliability of the PV system. A novel scheme estimating the 
capacitors’ voltages from the output ac voltage of the inverter is 
developed. The scheme allows replacing all dc-side voltage 
sensors by a single voltage sensor at the ac-side of the converter. 
Furthermore, the dc current sensors, conventionally required for 
the maximum power tracking (MPPT), are also eliminated. 
Instead, the outputs from the capacitors’ voltage control systems 
are utilized for the MPPT. The effectiveness of the proposed dc-
side sensorless system is experimentally demonstrated on a 2 kW 
single-phase 7-level CHB converter based PV system. 
 

Index Terms— Cascaded H-bridge converter, capacitor 
voltage estimation, photovoltaic system  

I. INTRODUCTION 

PPLICATION of the cascaded H-bridge multilevel 
converters (CHB-MCs) in Photovoltaic (PV) systems has 

been investigated in many technical papers [1]-[17]. However, 
none of these studies have focused on simplifying the system 
hardware by reducing the sensor count. 

Reducing the sensor count is of great importance because 
having both the dc voltage and the dc current sensors for each 
H-bridge cell increases the system cost and complexity and 
also reduces its reliability. Furthermore, extending the 
capacity of an existing system by adding more cells becomes 
difficult due to additional wirings required for the sensors and 
a potentially limited number of I/O channels available on the 
central control board. Therefore, eliminating either or both the 
dc current or voltage sensors is beneficial. 

In a conventional PV system, both the dc current and 
voltage sensors are required by the Maximum Power Point 
Tracking (MPPT) algorithm. Several single voltage sensor PV 
systems were proposed in literature [18]-[21]. In [18], the dc 
voltage sensor was eliminated and the MPPT was 
implemented using the dc-dc converter’s duty cycle and the dc 
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current measurement. In [19], the MPPT was implemented by 
only sensing the dc voltage. The change in the power 
delivered by the inverter was inferred from the control signals. 
Tracking the actual maximum power point of a PV array using 
only the voltage sensor was performed by connecting a 
capacitive load to it in [20], [21]. However, a specific type of 
converter was required to implement the proposed technique. 
In summary, none of these studies were implemented for a 
CHB-MC based PV system and in none of them were both the 
DC current and the dc voltage sensors eliminated. 

In conventional CHB-MC based PV systems the dc current 
sensors are required by the MPPT module and the dc voltage 
sensors are required for the capacitors’ voltages control 
system and the Pulse Width Modulation (PWM) generator. 
Hence, in higher level converters, many isolated dc sensors are 
required, which increases the system cost and complexity. The 
dc voltage sensors elimination in CHB-MCs was addressed in 
a few papers, but only for STATCOMs. The dc voltage 
sensors were replaced by a single sensor at the AC side of the 
CHB inverter-based STATCOM in [22]. The voltage 
measurement for each cell was performed at a specific 
moment of switching in which the output of all cells except 
one was zero. Therefore, the sampling frequency of 
capacitors’ voltages measurement was low and varying, which 
is not desirable. This drawback was addressed in [23], where 
the sampling frequency was kept constant at twice the 
switching frequency. However, no experimental validation 
was provided. In [24], the capacitor voltage sensors were 
replaced by an observer in the CHB based STATCOM. 
However, the slow dynamics of the observer makes this 
method not suitable to perform the PWM switching or fast 
voltage control. 

In this paper, for the first time, a dc-side sensorless CHB-
MC based PV system which does not require any dc current or 
dc voltage sensors is proposed.  

The rest of this paper is organized as follows: the proposed 
dc-side sensorless CHB-MC based PV system is introduced in 
Section II. The proposed single voltage sensor technique for 
measurement of capacitors’ voltages is introduced in Section 
III. The voltage controller module, the MPPT module, the 
current controller module, the power sharing module and the 
switching module are described in Section IV. The simulation 
and experimental results are provided in Sections V and VI. 
Finally, conclusions are summarized in Section VII.  
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II. DC-SIDE SENSORLESS CHB MULTILEVEL CONVERTER 

BASED PV CONTROL SYSTEM  

Since the output voltage of the PV modules can vary in a 
wide range due to partial shading, the PV modules are 
traditionally connected to a fixed dc link voltage of the 
inverter via a dc-dc converter. However, by introducing the 
DC-DC converter the overall efficiency of this configuration 
is reduced by 4-10% [25] and the cost and complexity of the 
system is increased. However, since the CHB-MC allows 
controlling the individual capacitors’ voltages independently, 
the PV modules can be connected directly to the dc links thus 
eliminating need for the dc-dc converters as shown in Fig. 1. 
Conventional control systems for this configuration require N 
H-bridges, N voltage sensors and N current sensors at the dc-
side. In this paper, a dc-side sensorless control system for the 
configuration in Fig. 1 is proposed. The main advantage of the 
proposed control system, as compared to conventional ones, is 
that all dc-side current and voltage sensors are eliminated, 
which significantly reduces the system’s complexity and cost. 
In the proposed control system, only one voltage sensor is 
required to measure the voltage at the ac-side of the CHB-MC. 
In addition, one voltage sensor is required to measure the grid 
voltage and one current sensor is required to measure the grid 
current.  

Block diagram of the proposed control system is shown in 
Fig. 2. The ac output voltage v measured at the ac-side of the 
CHB-MC is used to estimate the capacitors’ voltages in the 
Capacitors’ Voltages Estimation Module (CVEM). The 
estimated capacitors’ voltages are then used (i) as feedback 
signals in the voltage controller module, (ii) for feedforward 
compensation of the low order harmonic ripples in the 
switching module and (iii) to estimate the average PV 
modules’ power in order to track the optimal operating point 

in the MPPT module. The measured grid voltage, vg, and the 
grid current, ig, are used by the current controller module. ig is 
also used by the power sharing module to generate the voltage 
reference signals for the switching module. In the following 
sections, design and operation of each module is explained in 
detail.  

III. CAPACITORS’ VOLTAGES ESTIMATION MODULE  

The capacitors voltages are estimated using a single voltage 
sensor which measures the ac output voltage, v, at the ac-side 
of the CHB-MC. This allows eliminating all dc-side voltage 
measurement sensors. 

The measured ac output voltage, v, is sampled after each 
switching transition. Therefore, the voltage sampling 
frequency for each bridge is twice the switching frequency.  
The ac output voltage, v, in an (N+1)-level CHB-MC is given 
by  
 

   
N

j switchdiodejcj MVDVVSv
1

                                (1) 

 
where Sj=(0,+1,-1) is the switching function of the jth H-
bridge, and Vdiode and Vswitch are the forward voltage drops 
across the conducting diode and switch, respectively. D and M 
represent the number of conducting diodes and switches, 
respectively, which can be calculated as [23]  
 

ZAM

ZPD




2

2                                                                        (2) 

 
where P and A represent the number of H-bridges operating in 
the inverting and rectifying mode, respectively, and Z is the 
number of H-bridges generating zero voltage. 

Then, the capacitor voltage Vc-j of the jth switched bridge 
can be determined from the measured ac output voltage, v, 
before and after each switching transition as [23]  

 
"' vvV jc 

                                                                    (3) 

 
where v’ is the AC output voltage measured before and v’’ after 
the switching transition. 

In Fig. 3, the voltage sampling instances for a 7-level CHB-
MC (three H-bridges) are shown. As it can be seen, the 
sampling frequency is fixed at twice the switching frequency, 
which results in high resolution of the estimated capacitors’ 
voltages.  

The generated output ac voltage undergoes transients after 
each switching transition due to parasitic capacitances and 
inductances. Therefore, in order to allow sufficient time for 
the transients to decay and perform the measurement in the 
steady state, the measurement is performed after a time delay. 
However, when the pulse width is too narrow, there is not 
enough time to perform the estimation. In this case, the 
capacitors’ voltages reconstruction mechanism disregards the 
narrow pulses, no estimation is performed, and previously 
reconstructed capacitors’ voltages values are used. Similarly, 
when an H-bridge enters the over modulation region in which 

 
Fig. 1.  CHB multilevel converter PV system  
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The capacitors’ voltages are governed by (4), which is 
obtained by applying Kirchhoff's current law to N dc nodes at 
the dc-side and assuming that the losses are negligible. 
 

),,,1(,0 Nji
V

v

dt

dV
CI g

cj

jcj
jPV 

                (4) 

 
where C represents the capacitance of the capacitors 
(C=C1=C2=…=CN), Vcj is the voltage across the individual 
capacitors and IPV-j represents the current generated by the PV 
array connected to the jth H-bridge. 

The estimated capacitors’ voltages by the CVEM enter a 
low pass filter to remove unwanted second order harmonic 
ripple. The bandwidth of the PI voltage controllers, fv, has to 
meet two constraints: fv<0.2fg and fv<0.1fi, where fg is the grid 
frequency and fi is the bandwidth of the PI current controllers. 
The first constraint ensures that the PI voltage controllers are 
not affected by the oscillating component of the inverter ac 
power. The second constraint makes the outer voltage 
controller loops at least 10 times slower than the inner current 
controller loop. The output of the jth PI voltage controller, Icj-

ref, corresponds to the current generated by the PV array 
connected to the jth H-bridge, IPV-j. Hence, to generate the jth 
reference power signal, Pj-ref, the output of the jth PI controller 
is multiplied by the jth estimated capacitor voltage, Vcj-est. 
When the jth PI controller reaches the steady state, Pj-ref is 
equal to the actual power generated by the jth PV array, Pj. Pj-

ref is then used by the P&O algorithm implemented in the 
MPPT module to generate the jth reference capacitor voltage 
Vcj-ref. The P&O algorithm has to operate much slower than the 
voltage control loop, hence, the MPPT module’s update 
frequency, fm, is constrained to fm<0.1fv. 

B. Current controller module  

Block diagram of the current controller module is shown in 
Fig. 6 [26]. The grid current is governed by (5), which is 
obtained by applying Kirchhoff's voltage law to the ac side. 

 

),,,1(,0
1

Nj
dt

di
LRivv

N

j

g
ggj  

 (5) 

 
where vj is the output voltage generated by the jth H-bridge, L 
represents the inductance of the filtering inductor and R is its 
series resistance. vg and ig are the grid voltage and current 
respectively. 

The current controller module controls the grid current in 
the d-q reference frame. As the system is single-phase the 
required quadrature signal of the grid current is generated by a 
quarter of a period delay function. The active power reference 
current, Id-ref, is calculated as 

 

gg

N

j
refjrefd VRIPI /2

1













 




                                              (6) 

 
where Ig and Vg are the rms values of the grid current and 
voltage, respectively. 

The reactive power reference current, Iq-ref, is set to zero. 

The bandwidth of the PI current controllers, fi, has to meet the 
constraint: fi<0.2fs (where fs is the switching frequency). The 
outputs of the PI current controllers are the inverter’s 
reference ac voltage d-q components. The d-q components are 
then transformed back to the fixed reference frame to form the 
vref.  

C.  Power sharing module  

The objective of this module is to distribute the reference 
voltage vref generated by the current controller among the H-
bridges based on the reference powers refjP   from the voltage 

controller module. The module initially distributes the 
reference voltage among the H-Bridges equally. Therefore, the 
active power that each H-bridge draws is  

 

N

P
P

N

j refj

m

  
 1                                                                     (7) 

 
To adjust the active power drawn by the jth H-bridge to its 
reference value, Pj-ref, the module modifies the reference 
voltage of the jth H-bridge, vj-ref, as 
 

),,1(, Nj
I

i

I

PP

N

v
v

g

g

g

mrefjref
refj 


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
             (8) 

 
As it can be seen from (8), the modified reference voltages of 
the individual H-bridges do not alter the total ac voltage 
reference of the inverter. 

The converter has to be designed with sufficient margin to 
be able to operate under various environmental conditions. 
Therefore, to ensure proper operation of the power sharing 
module, a possible maximum and minimum power mismatch 
has to be calculated. The possible mismatch can be calculated 
from the PS-PWM switching technique criterion, which 
requires that the inverter reference voltage has to remain lower 
than the capacitor voltage in order to avoid overmodulation. 
Therefore, in the worst case scenario (when the capacitor 
voltage is minimum)  
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where Vc-j-min is the minimum value that the oscillating jth 
capacitor voltage reaches. Neglecting the filter inductor’s 
resistance and assuming that the grid current is in phase with 
the grid voltage, (9) can be rewritten as 
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Fig. 6.  Current controller module   
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